0368.4162 Foundations of Cryptography

November 16, 2017

Problem Set 2

Due: November 30

Instructions:

- Type your solution and email it to "focf17hw@gmail.com", with subject "HW#, ID#, Name".
- You're encouraged to use latex. You can find on the webpage the assignment's tex file to help you.
- You can cooperate. However, you should write the solution by yourself, and list all collaborators for each question. Same goes for any external sources that you may use.
- Do not discuss solutions over the course's forum. You are more than welcome though to ask for clarifications regarding the questions themselves.
- 1. (30 pts) Let ℓ, ℓ' be two polynomials. An ensemble of functions $\left\{ f_n : \{0,1\}^{\ell(n)} \to \{0,1\}^{\ell'(n)} \right\}_{n \in \mathbb{N}}$ is one-way if there exists a poly-time algorithm $f(1^n, x)$ that given 1^n and $x \in \{0, 1\}^{\ell(n)}$ outputs $f_n(x)$, and for every n.u. PPT A there exists a negligible μ such that for all $n \in \mathbb{N}$

$$\Pr_{x \leftarrow \{0,1\}^{\ell(n)}} \left[A(f_n(x)) \in f_n^{-1}(f_n(x)) \right] \le \mu(n) .$$

Show that any such ensemble implies OWFs as defined in class; namely, a function f that is defined on every input length n, and not just $\ell(n)$.

- 2. Let G be a PRG with stretch ℓ (that is, G maps n bits to $n + \ell(n)$ pseudorandom bits).
 - (a) (15 pts) Show that if $\ell(n) = \omega(\log n)$, then G is a OWF.
 - (b) (15 pts) Actually, show that even if $\ell(n) = 1$, then G is a OWF.
 - (c) (Bonus: 10 pts) Assume $\ell(n) = 1$. Define an ensemble of functions $f = \{f_n : \{0,1\}^{2n} \to \{0,1\}^{n+1}\}$ by $(s_0, s_1) \xrightarrow{f_n} G(s_1) \oplus G(s_2)$. Prove that f is one way or give a counter example.
- 3. We say that f is a weak one-way function if there exists a polynomial p such that for any n.u. PPT A and all $n \in \mathbb{N}$:

$$\Pr_{x \leftarrow \{0,1\}^n} \left[A(f(x)) \in f^{-1}(f(x)) \right] \le 1 - \Omega \left(\frac{1}{p(n)} \right) .$$

This question aims to show that weak OWFs may be strictly weaker than OWFs, but can always be amplified to OWFs.

- (a) (10 pts) Show that if there exist OWFs, then there also exist weak OWFs that are not OWFs.
- (b) Let f be a weak OWF with respect to some polynomial p (as in the above definition), and let $t(n) = \log^2 n \cdot p(n)$. We define the t-fold direct product $f_n^{\otimes t} : (\{0,1\}^n)^{t(n)} \to \{0,1\}^*$ as:

$$f_n^{\otimes t}(x_1,\ldots,x_{t(n)}) = f(x_1), f(x_2),\ldots,f(x_{t(n)})$$
.

We will show that the ensemble $\{f_n^{\otimes t}\}_n$ is one-way. In what follows, let A be an adversary that inverts $f_n^{\otimes t}$ with probability $\varepsilon = \varepsilon(n)$. For $i \in [t]$, let $G_i \subseteq \{0,1\}^n$ be the set of inputs x such that

$$\Pr_{x_1,\dots,x_{i-1},x_{i+1},\dots,x_t} \left[A \text{ inverts } f^{\otimes t}(x_1,\dots,x_{i-1},x,x_{i+1}\dots,x_t)) \right] \ge \varepsilon/2t \ .$$

i. (12 pts) Show that there exists an $i \in [t]$ such that

$$\Pr_{x \leftarrow \{0,1\}^n} \left[x \in G_i \right] \ge 1 - \frac{\log(2/\varepsilon)}{t} .$$

ii. (12 pts) Show that there exists a n.u. adversary A' (depending on A and i) whose running time is

$$time(A') = O\left(time(A) \cdot \frac{t}{2\varepsilon} \cdot n\right)$$

and which inverts f with probability at least $1 - \frac{\log(2/\varepsilon)}{t} - 2^{-n}$. (You can use the previous item even if you didn't manage to prove it.)

iii. (6 pts) Deduce that $\varepsilon(n) = n^{-\omega(1)}$. That is, $f^{\otimes t}$ is a OWF.